Artificial Intelligence

Chapter 9 (\& extra Material)

Inference Methods in First Order Logic

Dr. Mustafa Jarrar

Sina Institute, University of Birzeit mjarrar@birzeit.edu
www.jarrar.info

Watch this lecture and download the slides from

http://jarrar-courses.blogspot.com/2011/11/artificial-intelligence-fall-2011.html

Outline

Motivation: Knowledge Bases vs. Databases

FOL Inference Methods

- Reducing first-order inference to propositional inference
- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

> Most material adapted and improved from [1]

Lecture Keywords:

[^0]
Motivation: Knowledge Bases vs. Databases

Proof Theoretic View
The KB is a set of formulae and the query evaluation is to prove that the result is provable.

Transactions
i.e insert, update, delete...

Model Theoretic View
Evaluating the truth formula for each tuple in the table "Publish"

Outline

Reducing first-order inference to propositional inference

- Unification
- Generalized Modus Ponens
- Forward chaining
- Backward chaining
- Resolution

Inference in First-Order Logic

- We may inference in FOL by mapping FOL sentences into propositions, and apply the inference methods of propositional logic.
- This mapping is called propositionalization.
- Thus, Inference in first-order logic can be achieved using:
- Inference rules
- Forward chaining
- Backward chaining
- Resolution
- Unification
- Proofs
- Clausal form
- Resolution as search

Universal Instantiation (UI)

- Every instantiation of a universally quantified sentence is entailed by it:

$$
\begin{gathered}
\forall v \quad \alpha \\
\text { Subst }(\{\mathrm{v} / \mathrm{g}\}, \mathrm{a})
\end{gathered}
$$

for any variable v and ground term g

- Example:

$$
\begin{aligned}
& \forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x) \\
& \operatorname{King}(\operatorname{John}) \\
& \operatorname{Greedy}(J o h n)
\end{aligned}
$$

```
King(John) ^ Greedy(John) = Evil(John)
King(Richard) ^ Greedy(Richard) = Evil(Richard)
```


Existential Instantiation (EI)

For any sentence α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base:
$\exists v \alpha$
Subst(\{v/k\}, α)
Example:
$\exists x$ Crown $(x) \wedge$ OnHead (x,John)

Crown $\left(\mathrm{C}_{1}\right) \wedge$ OnHead $\left(\mathrm{C}_{1}\right.$, John $)$
provided C_{1} is a new constant symbol, called a Skolem constant.

- The variable symbol can be replaced by any ground term, i.e., any constant symbol or function symbol applied to ground terms only.
- In other words, we don't want to accidentally draw other inferences about it by introducing the constant.
- Convenient to use this to reason about the unknown object, rather than constantly manipulating the existential quantifier.

Reduction to Propositional Inference

Suppose the KB contains just the following:

```
\forallx King(x) ^ Greedy(x) => Evil(x)
King(John)
Greedy(John)
Brother(Richard,John)
```

- Instantiating the universal sentence in all possible ways, we have:

King(John) ^ Greedy(John) \Rightarrow Evil(John)
King(Richard) ^ Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

- The new KB is propositionalized: proposition symbols are King(John), Greedy(John), Evil(John), King(Richard), etc.

Reduction contd.

- Every FOL KB can be propositionalized so as to preserve entailment
- (A ground sentence is entailed by new KB iff entailed by original KB)
- Idea: propositionalize KB and query, apply resolution, return result
- Problem: with function symbols, there are infinitely many ground terms,
- e.g., Father(Father(Father(John)))

Reduction contd.

Theorem: Herbrand (1930). If a sentence α is entailed by an FOL KB, it is entailed by a finite subset of the propositionalized KB

Idea: For $n=0$ to ∞ do
create a propositional KB by instantiating with depth-\$n\$ terms see if α is entailed by this KB

Problem: works if α is entailed, loops if α is not entailed.
Godel's Completeness Theorem says that FOL entailment is only semidecidable:

- If a sentence is true given a set of axioms, there is a procedure that will determine this.
- If the sentence is false, then there is no guarantee that a procedure will ever determine this-i.e., it may never halt.

Completeness of some inference techniques

- Truth Tabling is not complete for FOL because truth table size may be infinite.
- Natural Deduction is complete for FOL but is not practical because the "branching factor" in the search is too large (so we would have to potentially try every inference rule in every possible way using the set of known sentences).
- Generalized Modus Ponens is not complete for FOL.
- Generalized Modus Ponens is complete for KBs containing only Horn clauses.

Problems with Propositionalization

- Propositionalization seems to generate lots of irrelevant sentences.
E.g., from:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
$\forall y$ Greedy (y)
Brother(Richard, John)
- It seems obvious that Evil(John), but propositionalization produces lots of facts such as Greedy(Richard) that are irrelevant
- With $p k$-ary predicates and n constants, there are $p \cdot n^{k}$ instantiations.

Problems with Propositionalization

Given this KB:
$\operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
Greedy(John)
How do we really know that Evil(John)?

- We find x that is a King and Greedy, if so then x is Evil.
- That is, we need to a substitution $\{x / J o h n\}$

But Given this KB:
$\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x)$
King(John)
$\forall y$ Greedy (y)
How do we really know that Evil(John)?

- That is, we need to the substitutions $\{x / J o h n, ~ y, J o h n\}$, but how?

Unification

- We can get the inference immediately if we can find a substitution θ such that $\operatorname{King}(x)$ and $\operatorname{Greedy}(x)$ match King(John) and Greedy(y)

$$
\theta=\{x / \text { John, } y / \text { John }\}
$$

- This is called Unification, a "pattern-matching" procedure:
- Takes two atomic sentences, called literals, as input
- Returns "Failure" if they do not match and a substitution list, θ, if they do

$$
\operatorname{Unify}(P, Q)=\theta \text { if } P \theta=Q \theta
$$

- That is, $\operatorname{unify}(p, q)=\theta$ means $\operatorname{subst}(\theta, p)=\operatorname{subst}(\theta, q)$ for two atomic sentences, p and q
- $\boldsymbol{\theta}$ is called the Most General Unifier (MGU)
- All variables in the given two literals are implicitly universally quantified.
- To make literals match, replace (universally quantified) variables by terms

Unification Example

Unify $(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we a query Knows(John,x), we need to unify Knows(John,x) with all sentences in KD.

P	Q	θ
Knows(John,x)	Knows(John,Jane)	
Knows(John,x)	Knows(y,Bill)	
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,Elizabeth)	

Unification Example

Unify $(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we a query Knows(John,x), we need to unify Knows(John,x) with all sentences in KD.

\mathbf{P}	\mathbf{Q}	θ
Knows(John,x)	Knows(John,Jane) Knows(John,x) Knows(y,Bill)	$\{x /$ Jane $\}$
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,Elizabeth)	

Unification Example

Unify $(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we a query Knows(John,x), we need to unify Knows(John,x) with all sentences in KD.

\mathbf{P}	\mathbf{Q}	θ
Knows(John,x)	Knows(John,Jane)	$\{x /$ Jane $\}$
Knows(John, $x)$	Knows(y,Bill)	\{x/Bill,y/John $\}$
Knows(John,x)	Knows(y,Mother(y))	
Knows(John,x)	Knows(x,Elizabeth)	

Unification Example

Unify $(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we have a query Knows(John,x), we need to unify Knows(John, x) with all sentences in KD.

\mathbf{P}	\mathbf{Q}	θ
Knows(John,x)	Knows(John,Jane)	$\{x /$ Jane $\}$
Knows(John,x)	Knows(y,Bill)	\{x/Bill,y/John $\}$
Knows(John, $x)$	Knows(y,Mother(y))	\{y/John,x/Mother(John) $\}$
Knows(John,x)	Knows(x,Elizabeth)	

Unification Example

Unify $(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we have a query Knows(John,x), we need to unify Knows(John, x) with all sentences in KD.

\mathbf{P}	\mathbf{c}	θ
Knows(John,x)	Knows(John,Jane)	$\{x /$ Jane $\}$
Knows(John,x)	Knows(y,Bill)	\{x/Bill,y/John $\}$
Knows(John,x)	Knows(y,Mother(y))	\{y/John,x/Mother(John) $\}$
Knows(John,x)	Knows(x,Elizabeth)	fail

- The last unification failed because x cannot take on the values John and Elizabeth at the same time.
- Because it happens that both sentences use the same variable name.
- Solution: rename x in Knows(x,Elizabeth) into Knows(z_{17},Elizabeth) , without changing its meaning. (this is called standardizing apart)

Unification Example

Unify $(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we have a query Knows(John,x), we need to unify Knows(John, x) with all sentences in KD.

P	Q	θ
Knows(John, x)	Knows(John,Jane)	\{x/Jane $\}$
Knows(John,x)	Knows(y,Bill)	\{x/Bill,y/John\}
Knows(John,x)	Knows(y,Mother(y))	\{y/John,x/Mother(John)\}
Knows(John,x)	Knows(z_{17}, Elizabeth)	\{x/Elizabeth, $\mathrm{z}_{17} / \mathrm{John}$ \}

- The last unification failed because x cannot take on the values John and Elizabeth at the same time.
- Because it happens that both sentences use the same variable name.
- Solution: rename x in Knows(x,Elizabeth) into Knows(z17,Elizabeth) , without changing its meaning. (this is called standardizing apart)

Unification Example

$\operatorname{Unify}(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we have a query Knows(John,x), we need to unify Knows(John, x) with all sentences in KD.

P	Q	θ
Knows(John, x)	Knows(John,Jane)	\{x/Jane
Knows(John, x)	Knows(y, Bill)	\{x/Bill,y/John\}
Knows(John,x)	Knows(y,Mother(y))	\{y/John,x/Mother(John)\}
Knows(John,x)	Knows(z_{17}, Elizabeth)	\{x/Elizabeth, $\mathrm{z}_{17} /$ John \}

Unification Example

Unify $(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$

Suppose we have a query Knows(John,x), we need to unify Knows(John, x) with all sentences in KD.

P	Q	θ
Knows(John, x)	Knows(John,Jane)	\{x/Jane $\}$
Knows(John,x)	Knows(y,Bill)	\{x/Bill,y/John\}
Knows(John,x)	Knows(y,Mother(y))	\{y/John,x/Mother(John)\}
Knows(John,x)	Knows(z_{17}, Elizabeth)	\{x/Elizabeth, $\mathrm{z}_{17} / \mathrm{John}$ \}
Knows(John,x)	Knows(y,z)	

In the last case, we have two answers:
$\theta=\{y / J o h n, x / z\}$, or

$$
\theta=\{y / J o h n, x / J o h n, z / J o h n\}
$$

This first unification is more general, as it places fewer restrictions on the values of the variables.

Unification Example

$\operatorname{Unify}(p, q)=\theta$ where $\operatorname{Subst}(\theta, p)=\operatorname{Subset}(\theta, q)$
Suppose we have a query Knows(John,x), we need to unify Knows(John, x) with all sentences in KD.

P	Q	θ
Knows(John, x)	Knows(John,Jane)	\{x/Jane $\}$
Knows(John, x)	Knows(y,Bill)	\{x/Bill,y/John\}
Knows(John,x)	Knows(y,Mother(y))	\{y/John,x/Mother(John)\}
Knows(John,x)	Knows(z_{17},Elizabeth)	\{x/Elizabeth, $\mathrm{z}_{17} /$ John \}
Knows(John,x)	Knows(y,z)	\{y/John,x/z\}

In the last case, we have two answers:
> $\theta=\{y / J o h n, x / z\}$, or
> $\theta=\{y / J o h n, x / J o h n, z / J o h n\}$

For every unifiable pair of expressions, there is a Most General Unifier MGU

Another Example

- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(Bill), y)
- \{x/Bill, y/mother(Bill) $\}$
- Example:
- parents(x, father(x), mother(Bill))
- parents(Bill, father(y), z)
- \{x/Bill, y/Bill, z/mother(Bill)\}
- Example:
- parents(x, father(x), mother(Jane))
- parents(Bill, father(y), mother(y))
- Failure

Generalized Modus Ponens (GMP)

- A first-order inference rule, to find substitutions easily.
- Apply modus ponens reasoning to generalized rules.
- Combines And-Introduction, Universal-Elimination, and Modus Ponens. Example: $\{P(c), Q(c), \forall \mathrm{x}(\mathrm{P}(x) \wedge Q(x)) \Rightarrow R(\mathrm{x})\}$ derive $R(c)$
- General case: Given
- Atomic sentences $P_{1}, P_{2}, \ldots, P_{n}$
- Implication sentence $\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{\mathrm{n}}\right) \Rightarrow R$
- $\mathrm{Q}_{1}, \ldots, \mathrm{Q}_{\mathrm{n}}$ and R are atomic sentences
- Substitution $\operatorname{subst}\left(\theta, P_{i}\right)=\operatorname{subst}\left(\theta, Q_{i}\right) \quad($ for $i=1, \ldots, n)$
- Derive new sentence: $\operatorname{subst}(\theta, R)$
- Substitutions
- $\operatorname{subst}(\theta, \alpha)$ denotes the result of applying a set of substitutions defined by θ to the sentence α
- A substitution list $\theta=\left\{\mathrm{v}_{1} / \mathrm{t}_{1}, \mathrm{v}_{2} / \mathrm{t}_{2}, \ldots, \mathrm{v}_{\mathrm{n}} / \mathrm{t}_{\mathrm{n}}\right\}$ means to replace all occurrences of variable symbol v_{i} by term t_{i}
- Substitutions are made in left-to-right order in the list

Generalized Modus Ponens (GMP)

A first-order inference rule, to find substitutions easily.

$$
\begin{gathered}
\frac{P_{1}, P_{2}, \ldots, P_{\mathrm{n}}, \quad\left(Q_{1} \wedge Q_{2} \wedge \ldots \wedge Q_{\mathrm{n}} \Rightarrow R\right)}{\operatorname{Subst}(\mathrm{R}, \theta)} \quad \text { where } P_{\mathrm{i}} \theta= \\
\frac{\operatorname{King}(\operatorname{John}), \operatorname{Greedy}(y), \quad(\operatorname{King}(x), \operatorname{Greed} y(x) \Rightarrow \operatorname{Evil}(x))}{\operatorname{Subst}(E v i l(x),\{x / \operatorname{John}, y / \operatorname{John}\})}
\end{gathered}
$$

- GMP used with KB of definite clauses (exactly one positive literal).
- All variables assumed universally quantified.

Soundness of GMP

Need to show that

$$
P_{1}, \ldots, P_{\mathrm{n}},\left(Q_{1} \wedge \ldots \wedge Q_{n} \Rightarrow Q\right) \vDash R \theta
$$

provided that $P i \theta=Q i \theta$ for all i
Lemma: For any sentence Q, we have $Q \vDash Q \theta$ by Ul

$$
\begin{aligned}
& \left(P_{1} \wedge \ldots \wedge P_{n} \Rightarrow \mathrm{R}\right) \vDash\left(P_{1} \wedge \ldots \wedge p_{\mathrm{n}} \Rightarrow R\right) \theta=\left(P_{1} \theta \wedge \ldots \wedge P_{n} \theta \Rightarrow R \theta\right) \\
& \mathrm{Q}_{1} \backslash \ldots, P_{n} \vDash Q_{1} \wedge \ldots \wedge Q_{n} \vDash P_{1} \theta \wedge \ldots \wedge Q_{n} \theta
\end{aligned}
$$

From 1 and $2, \mathrm{R} \theta$ follows by ordinary Modus Ponens

Forward Chaining

- Proofs start with the given axioms/premises in KB , deriving new sentences using GMP until the goal/query sentence is derived
- This defines a forward-chaining inference procedure because it moves "forward" from the KB to the goal
- Natural deduction using GMP is complete for KBs containing only Horn clauses

Example Knowledge Base

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal

Example Knowledge Base contd.

... it is a crime for an American to sell weapons to hostile nations:
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge \operatorname{Hostile}(z) \Rightarrow$ Criminal (x)
Nono ... has some missiles, i.e., $\exists x$ Owns(Nono,x) \wedge Missile(x):
Owns $\left(\right.$ Nono,$\left.M_{1}\right) \wedge \operatorname{Missile}\left(M_{1}\right)$
... all of its missiles were sold to it by Colonel West
Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons:
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
An enemy of America counts as "hostile":
Enemy (x,America) \Rightarrow Hostile (x)
West, who is American ...
American(West)
The country Nono, an enemy of America ...
Enemy(Nono,America)

Forward Chaining Proof

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow \operatorname{Criminal}(x)$
Owns(Nono, $\left.M_{I}\right) \wedge \quad \operatorname{Missile}\left(M_{I}\right)$
$\operatorname{Missile}(x) \wedge$ Owns(Nono,x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow \operatorname{Weapon}(x)$
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

Forward Chaining Proof

American $(x) \wedge$ Weapon(y) $\wedge \operatorname{Sells}(x, y, z) \Rightarrow \operatorname{Criminal}(x)$
Owns(Nono, $\left.M_{I}\right) \wedge \quad \operatorname{Missile}\left(M_{I}\right)$
Missile(x) ^ Owns(Nono, x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow \operatorname{Weapon}(x)$
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

Forward Chaining Proof

Enemy(Nono,America)
American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow \operatorname{Criminal}(x)$
Owns(Nono, $\left.M_{I}\right) \wedge \quad \operatorname{Missile}\left(M_{I}\right)$
Missile(x) ^ Owns(Nono, x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow \operatorname{Weapon}(x)$
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

Forward Chaining Proof

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow \operatorname{Criminal}(x)$
Owns(Nono, $\left.M_{I}\right) \wedge \quad \operatorname{Missile}\left(M_{I}\right)$
Missile(x) ^ Owns(Nono, x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

Forward Chaining Proof

Forward Chaining Proof

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow$ Criminal (x)
Owns(Nono, $\left.M_{l}\right) \wedge \quad \operatorname{Missile}\left(M_{l}\right)$
Missile(x) ^ Owns(Nono, x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

Properties of Forward Chaining

- Sound and complete for first-order definite clauses.
- Datalog = first-order definite clauses + no functions
- FC terminates for Datalog in finite number of iterations.
- May not terminate in general if α is not entailed.
- This is unavoidable: entailment with definite clauses is semidecidable.

Efficiency of Forward Chaining

Incremental forward chaining: no need to match a rule on iteration k if a premise wasn't added on iteration $k-1$
\Rightarrow Match each rule whose premise contains a newly added positive literal.

Matching itself can be expensive:
Database indexing allows $\mathrm{O}(1)$ retrieval of known facts
e.g., query $\operatorname{Missile}(x)$ retrieves $\operatorname{Missile}\left(M_{1}\right)$

Forward chaining is widely used in deductive databases.

Backward Chaining

- Proofs start with the goal query, find implications that would allow you to prove it, and then prove each of the antecedents in the implication, continuing to work "backwards" until you arrive at the axioms, which we know are true.
- Backward-chaining deduction using GMP is complete for KBs containing only Horn clauses.

Backward chaining example

```
Criminal(West)
```

```
American(x) ^ Weapon(y) ^ Sells(x,y,z) \ Criminal(x)
Owns(Nono,M}\mp@subsup{M}{l}{})\wedge Missile(M, (M
Missile(x) ^ Owns(Nono,x) => Sells(West,x,Nono)
Missile(x) => Weapon(x)
Enemy(x,America) }=>\mathrm{ Hostile(x)
American(West)
Enemy(Nono,America)

\section*{Backward chaining example}

```

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow$ Criminal (x)
Owns(Nono, M_{1}) $\wedge \quad \operatorname{Missile}\left(M_{1}\right)$
$\operatorname{Missile}(x) \wedge$ Owns(Nono,x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

Backward chaining example


```
American \((x) \wedge\) Weapon \((y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow\) Criminal \((x)\)
Owns(Nono, \(\left.M_{l}\right) \wedge \quad \operatorname{Missile}\left(M_{l}\right)\)
Missile(x) ^ Owns(Nono,x) \(\Rightarrow\) Sells(West,x,Nono)
\(\operatorname{Missile}(x) \Rightarrow\) Weapon \((x)\)
Enemy(x,America) \(\Rightarrow\) Hostile \((x)\)
American(West)
Enemy(Nono,America)

\section*{Backward chaining example}

```

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow$ Criminal (x)
Owns(Nono, $\left.M_{I}\right) \wedge \quad \operatorname{Missile}\left(M_{I}\right)$
$\operatorname{Missile}(x) \wedge$ Owns(Nono,x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

```

\section*{Backward chaining example}

```

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow$ Criminal (x)
Owns(Nono, $\left.M_{l}\right) \wedge \quad \operatorname{Missile}\left(M_{l}\right)$
$\operatorname{Missile}(x) \wedge$ Owns(Nono,x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

```

\section*{Backward chaining example}

```

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow$ Criminal (x)
Owns(Nono, $\left.M_{l}\right) \quad \wedge \quad \operatorname{Missile}\left(M_{l}\right)$
Missile(x) ^ Owns(Nono, x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

Backward chaining example

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \Rightarrow$ Criminal (x)
Owns(Nono, $\left.M_{I}\right) ~ \wedge \quad \operatorname{Missile}\left(M_{l}\right)$
Missile(x) ^ Owns(Nono, x) \Rightarrow Sells(West,x,Nono)
$\operatorname{Missile}(x) \Rightarrow$ Weapon (x)
Enemy(x,America) \Rightarrow Hostile (x)
American(West)
Enemy(Nono,America)

One More Backward Chaining Example

1. $\operatorname{Pig}(y) \wedge \operatorname{Slug}(z) \Rightarrow$ Faster (y, z)
2. $\operatorname{Slimy}(a) \wedge \operatorname{Creeps}(a) \Rightarrow \operatorname{Slug}(a)$
3. Pig(Pat)
4. Slimy(Steve)
5. Creeps(Steve)

Properties of Backward Chaining

- Depth-first recursive proof search: space is linear in size of proof.
- Incomplete due to infinite loops
\Rightarrow fix by checking current goal against every goal on stack.
- Inefficient due to repeated subgoals (both success and failure).
\Rightarrow fix using caching of previous results (extra space)
- Widely used for logic programming.

Forward vs. Backward Chaining

- FC is data-driven
- Automatic, unconscious processing
- E.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- More efficient when you want to compute all conclusions.
- BC is goal-driven, better for problem-solving
- Where are my keys? How do I get to my next class?
- Complexity of BC can be much less than linear in the size of the KB
- More efficient when you want one or a few decisions.

Logic Programming

- Algorithm = Logic + Control
- A backward chain reasoning theorem-prover applied to declarative sentences in the form of implications:

$$
\text { If } \mathrm{B}_{1} \text { and } \ldots \text { and } \mathrm{B}_{\mathrm{n}} \text { then } \mathrm{H}
$$

- Implications are treated as goal-reduction procedures:
to show/solve H, show/solve B_{1} and \ldots and B_{n}.
where implication would be interpreted as a solution of problem H given solutions of $B_{1} \ldots B_{n}$.
- Find a solution is a proof search, which done Depth-first backward chaining.
- Because automated proof search is generally infeasible, logic programming relies on the programmer to ensure that inferences are generated efficiently. Also by restricting the underlying logic to a "wellbehaved" fragment such as Horn clauses or Hereditary Harrop formulas.

Logic Programming: Prolog

Developed by Alain Colmerauer(Marseille) and Robert Kowalski(Edinburgh) in 1972.

Program = set of clauses of the form
$\mathrm{P}(\mathrm{x})_{1} \wedge \ldots \wedge \mathrm{p}\left(\mathrm{x}_{\mathrm{n}}\right) \Rightarrow$ head
written as
head :- $P\left(x_{1}\right), \ldots, P\left(x_{n}\right)$.
For example:
criminal(X) : - american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

Closed-world assumption ("negation as failure").

- alive(X) :- not dead(X).
- alive (joe) succeeds if dead (joe) fails.

Logic Programming: Prolog

```
mother(Nuha, Sara).
father(Ali, Sara).
father(Ali, Dina).
father(Said, Ali).
sibling(X, Y) :- parent(Z, X), parent(Z, Y).
parent (X, Y) :- father(X, Y).
parent(X, Y) :- mother (X, Y).
```

?- sibling(Sara, Dina). Yes
?- father(Father, Child).

Resolution in FOL

Resolution in FOL

- Recall: We saw that the propositional resolution is a refutationly complete inference procedure for Propositional Logic.
- Here, we extend resolution to FOL.
- First we need to covert sentences in to CNF, for example:

$$
\forall x \operatorname{American}(x) \wedge \operatorname{Weapon}(\mathrm{y}) \wedge \operatorname{Sells}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \wedge \operatorname{Hostile}(\mathrm{z}) \Rightarrow \operatorname{Criminal}(\mathrm{x})
$$

- becomes
\neg American $(\mathrm{x}) \vee \neg$ Weapon $(\mathrm{y}) \vee \neg \operatorname{Sells}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \vee \neg \operatorname{Hostile}(\mathrm{z}) \vee \operatorname{Criminal}(\mathrm{x})$
- Every sentence of first-order logic can be converted into inferentially equivalent CNF sentence.
- The procedure for conversion to CNF is similar to the propositional case.

Conversion to CNF

- The procedure for conversion to CNF is similar to the positional case.
- For example: "Everyone who loves all animals is loved by someone", or

$$
\forall \mathrm{x}[\forall \mathrm{y} \operatorname{A\operatorname {Aimal}(\mathrm {y})\Rightarrow \operatorname {Loves}(\mathrm {x},\mathrm {y})]\quad \Rightarrow \quad [\exists \mathrm {y}\operatorname {Loves}(\mathrm {y},\mathrm {x})]}
$$

Step 1 Eliminate Implications

$$
\forall \mathrm{x}[\neg \forall \mathrm{y} \neg \operatorname{Animal}(y) \vee \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]
$$

Step 2. Move \neg inwards: $\neg \forall \mathrm{xp} \equiv \exists \mathrm{x} \neg \mathrm{p}, \neg \exists \mathrm{x} \mathrm{p} \equiv \forall \mathrm{x} \neg \mathrm{p}$

$$
\begin{aligned}
& \forall \mathrm{x}[\exists \mathrm{y} \neg(\neg \operatorname{Animal}(\mathrm{y}) \vee \operatorname{Loves}(x, y))] \vee[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, x)] \\
& \forall \mathrm{x}[\exists \mathrm{y} \neg \neg \operatorname{Animal}(\mathrm{y}) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, x)] \\
& \forall \mathrm{x}[\exists \mathrm{y} \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]
\end{aligned}
$$

Conversion to CNF contd.

Step 2. Move \neg inwards:
$\forall \mathrm{x}[\exists \mathrm{y} \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{y} \operatorname{Loves}(y, x)]$
Step 3. Standardize variables: each quantifier should use a different one
$\forall \mathrm{x}[\exists \mathrm{y} \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists \mathrm{z} \operatorname{Loves}(z, x)]$
Step 4. Skolemize: a more general form of existential instantiation. Each existential variable is replaced by a Skolem function of the enclosing universally quantified variables:
$\forall \mathrm{x}[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)$

Step 5. Drop universal quantifiers:

$$
[\operatorname{Animal}(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee \operatorname{Loves}(G(x), x)
$$

Step 6. Distribute \vee over \wedge :

$$
[\operatorname{Animal}(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]
$$

Resolution in FOL

- The inference rule (FOL version):

$$
\frac{G_{1} \vee \cdots \vee \zeta_{k}, \quad m_{1} \vee \cdots \vee m_{n}}{\left(\mathcal{G}_{1} \vee \cdots \vee \zeta_{i-1} \vee \xi_{i+1} \vee \cdots \vee \zeta_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

where $\operatorname{Unify}\left(\mathcal{f}_{\mathrm{i}}, \neg m_{\mathrm{j}}\right)=\theta$.

- The two clauses are assumed to be standardized apart so that they share no variables.
- Apply resolution steps to $\mathrm{CNF}(\mathrm{KB} \wedge \neg \alpha)$.
- Let's extend the previous example, and apply the resolution:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Ali loves all animals.
Either Ali or Kais killed the cat, who is named Foxi.
Did Kais killed the cat?

Resolution in FOL (Example)

Let's extend the previous example, and apply the resolution:
Everyone who loves all animals is loved by someone. Anyone who kills an animal is loved by no one. Ali loves all animals. Either Ali or Kais killed the cat, who is an animal and its is named Foxi. Did Kais killed the cat?

In FOL:
A. $\forall \mathrm{x}[\forall \mathrm{y} \operatorname{Animal}(\mathrm{y}) \Rightarrow \operatorname{Loves}(\mathrm{x}, \mathrm{y})] \quad \Rightarrow \quad[\exists \mathrm{y} \operatorname{Loves}(\mathrm{y}, \mathrm{x})]$
B. $\forall \mathrm{x}[\exists \mathrm{y} \operatorname{Animal}(\mathrm{y}) \Rightarrow \operatorname{Kills}(\mathrm{x}, \mathrm{y})] \quad \Rightarrow \quad[\exists \mathrm{z} \neg \operatorname{Loves}(\mathrm{z}, \mathrm{x})]$
C. $\forall \mathrm{x} \operatorname{Animal}(\mathrm{x}) \Rightarrow$ Loves(Ali, x$)$
D. Kills (Ali,Foxi) $\vee \operatorname{Kills(Kais,x)~}$
E. $\operatorname{Cat}($ Foxi $)$
F. $\forall \mathrm{xCat}(\mathrm{x}) \Rightarrow$ Animal (x)
\neg G. \neg Kills(Kais,Foxi)

Resolution in FOL (Example)

```
    A. }\forall\textrm{x}[\forall\textrm{y}\operatorname{Animal(y)}=>\operatorname{Loves}(\textrm{x},\textrm{y})]\quad=>\quad[\existsy\operatorname{Loves}(\textrm{y},\textrm{x})
    B. }\forall\textrm{x}[\exists\textrm{y}\operatorname{Animal}(\textrm{y})=>\operatorname{Kills}(\textrm{x},\textrm{y})]\quad=>\quad[\exists\textrm{z}\neg\operatorname{Loves}(\textrm{z},\textrm{x})
    C. }\forall\textrm{x}\operatorname{Animal(x)}=>\mathrm{ Loves(Ali,x)
    D. Kills (Ali,Foxi) v Kills(Kais,x)
    E. Cat(Foxi)
    F. }\forall\textrm{x}\operatorname{Cat}(\textrm{x})=>\mathrm{ Animal (x)
\neg G . ~ \neg K i l l s ( K a i s , F o x i )
```

After applying the CNF, we obtain:

```
A1. Animal \((\mathrm{F}(\mathrm{x})) \vee \operatorname{Loves}(\mathrm{G}(\mathrm{x}), \mathrm{x})\)
A2. \(\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)\)
    B. \(\neg \operatorname{Animal}(\mathrm{y}) \vee \operatorname{Kills}(\mathrm{x}, \mathrm{y}) \vee \neg \operatorname{Loves}(\mathrm{z}, \mathrm{x})\)
    C. \(\neg\) Animal(x) Cat(Foxi) Loves(Ali,x)
    D. Kills(Ali,Foxi) \(\vee\) Kills(Kais, Foxi)
    E. \(\operatorname{Cat}(\) Foxi \()\)
    F. \(\neg \operatorname{Cat}(\mathrm{x}) \vee\) Animal (x)
\(\neg\) G. \(\neg\) Kills(Kais,Foxi)
```


Resolution in FOL (Example)

A1	$\operatorname{Animal}(\mathrm{F}(\mathrm{x})) \vee \operatorname{Loves}(\mathrm{G}(\mathrm{x}), \mathrm{x})$		
A2	$\neg \operatorname{Loves}(\mathrm{x}, \mathrm{F}(\mathrm{x}) \mathrm{)} \vee \operatorname{Loves}(\mathrm{G}(\mathrm{x}), \mathrm{x})$		
B	\neg Loves (y,x) $\vee \neg$ Animal(z) $\vee \neg$ Kills (x,z)		
C	\neg Animal(x) Cat(Foxi) Loves(Ali,x)		
D	Kills(Ali,Foxi) \vee Kills(Kais, Foxi)		
E	Cat(Foxi)		
F	$\neg \operatorname{Cat}(\mathrm{x}) \vee$ Animal (x)		
G	\neg Kills(Kais,Foxi)		
H	Animal (Foxi)	E,F	\{x/Foxi\}
I	Kills(Ali,Foxi)	D,G	\{\}
J	\neg Animal(F(Ali)) \vee Loves(G(Ali), Ali)	A2,C	\{x/Ali, $F(x) / x\}$
K	Loves(G(Ali), Ali)	J,A1	$\{\mathrm{F}(\mathrm{x}) / \mathrm{F}(\mathrm{Ali}), \mathrm{X} / \mathrm{Ali}\}$
L	\neg Loves(y,x) $\vee \neg$ Kills(x,Foxi)	H,B	\{z/Foxi\}
M	\neg Loves(y,Ali)	I,L	\{x/Ali\}
N	.	M, K	\{y/G(Ali) $\}$

Resolution in FOL (Another Example)

- The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.
- Prove that Col. West is a criminal
- Assume this is represented in FOL (and in CNF):
\neg American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile $(z) \vee$ Criminal (x)
\neg Missile $(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nano)
\neg Enemy (x,America) \vee Hostile (x)
\neg Missile $(x) \vee$ Weapon (x)
Owns(Nono, M1)
Missile(M1)
American(West)
Enemy(Nano,America)
\neg Criminal (West)

Resolution in FOL (Another Example)

1	\neg American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile $(z) \vee$ Criminal (x)		
2	\neg Missile $(x) \vee \neg$ Owns(Nono, $x) \vee$ Sells(West, x, Nano $)$		
3	\neg Enemy $(x$, America $) \vee$ Hostile (x)		
4	\neg Missile $(x) \vee$ Weapon (x)		
5	Owns(Nono,M $\left.{ }_{1}\right)$		
6	Missile $\left(M_{1}\right)$		
7	American(West)		
8	Enemy(Nano,America)		
9	\neg Criminal (West)		

Resolution in FOL (Another Example)

1	\neg American $(x) \vee \neg$ Weapon $(y) \vee \neg$ Sells $(x, y, z) \vee \neg$ Hostile $(z) \vee$ Criminal (x)		
2	\neg Missile (x) $\vee \neg$ Owns(Nono, x) \vee Sells(West, x, Nano)		
3	\neg Enemy (x , America) \vee Hostile(x)		
4	\neg Missile (x) \vee Weapon (x)		
5	Owns(Nono, M_{1})		
6	Missile(M_{1})		
7	American(West)		
8	Enemy(Nano,America)		
9	\neg Criminal (West)		
10	\neg American(West) $\vee \neg$ Weapon(y) $\vee \neg$ Sells(West, y,z) $\vee \neg$ Hostile(z)	1,9	\{x/West\}
11	\neg Weapon(y) $\vee \neg$ Sells(West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	7,10	\{x/West\}
12	\neg Missile (y) $\vee \neg$ Sells(West, $\mathrm{y}, \mathrm{z}) \vee \neg$ Hostile(z)	4,11	\{x/y\}
13	\neg Sells(West, $\left.\mathrm{M}_{1}, \mathrm{z}\right) \vee \neg$ Hostile(z)	6,12	\{y/ M_{1} \}
14	\neg Missile $\left(\mathrm{M}_{1}\right) \vee \neg$ Owns(Nono, $\left.\mathrm{M}_{1}\right) \vee \neg$ Hostile(Nano)	2,13	\{x/M ${ }_{1}, \mathrm{z} /$ Nano $\}$
15	\neg Owns(Nono, M_{1}) $\vee \neg$ Hostile(Nano)	6,14	\{\}
16	\neg Hostile(Nano)	5,15	\{\}
17	\neg Enemy(Nano,America)	3,16	\{x/Nano \}
18	.	8,17	\{\}

Resolution in FOL (Another Example)

Another representation (as Tree)

Summary

- Instantiating quantifiers is typically very slow.
- Unification is much more efficient than Instantiating quantifiers.
- Generalized Modus Ponens = Modus Ponens + unification, which is then used in forward/backward chaining.
- Generalized Modus Ponens is complete but semidecidable.
- Forward chaining is complete, and used in deductive databases, and Datalogs with polynomial time.
- Backward chaining is complete, used in logic programming, suffers from redundant inference and infinite loops.
- Generalized Resolution is refutation complete for sentences with CNF.
- There are no decidable inference methods for FOL.
- The exam will evaluate: WhatlHowlWhy (for all above)
- Next Lecture: Description logics are decidable logics.

References

[1] S. Russell and P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, 2003, Second Edition
[2] Paula Matuszek: Lecture Notes on Artificial Intelligence http://www.csc.villanova.edu/~matuszek/fall2008/Logic.ppt

[^0]: Logic, First Order Logic, FOL, Inference Methods, Logical Implication, satisfiable, Unsatisfiable, Falsifiable, Valid, Tautology. Deduction, Reasoning, Enumeration Method, Inference rules, Resolution, refutation theorem-proving technique, Forward Chaining, Backward Chaining, Conjunctive Normal Form, Horn clauses, entailment, Logical Implication, Soundness, Completeness

 $$
 \begin{aligned}
 & \text { ،صحة الجمل المنطقية، الحدود، التتاقض، الضدحد، الاسقاط }
 \end{aligned}
 $$

